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Abstract
In this paper we study meaningless sets in infinitary combinatory logic. So far only a handful of
meaningless sets were known. We show that there are uncountably many meaningless sets. As an
application to the semantics of finite combinatory logics, we show that there exist uncountably
many combinatory algebras that are not a lambda algebra. We also study ways of weakening the
axioms of meaningless sets to get, not only sufficient, but also necessary conditions for having
confluence and normalisation.
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1 Introduction

In this paper, we study meaningless sets for infinitary combinatory logic [8, 5]. This is of in-
terest because for infinitary combinatory logic, only a handful of meaningless sets are known
so far, in stark contrast to the current situation for infinitary lambda calculus [14, 16]. Mean-
ingless sets play an important role in the construction of syntactic models of finite lambda
calculus and combinatory logic. The interpretation of a term is its infinitary normal form
and it is well-defined if the corresponding infinitary lambda calculus or infinitary rewriting
system is confluent and normalising. The extension with infinite terms and infinite reduc-
tions ruins the confluence property. We can recover confluence by extending the syntax with
a fresh symbol ⊥ and by extending the reduction rules with a ⊥-rule that can reduce terms
from a well chosen set U of meaningless terms to ⊥. The papers [8, 5] looked simultaneously
at orthogonal infinitary term rewriting systems and infinitary lambda calculus and gave a
sufficient set of conditions for U so that the corresponding infinitary term rewriting systems
or infinitary lambda calculi are confluent and normalising. Later for infinitary lambda cal-
culus it was found in [16] that there exists a set of necessary and sufficient conditions for
U such that the corresponding infinitary lambda calculus with β and ⊥-reduction is conflu-
ent and normalising. And in [14, 15] it has been shown that there are uncountably many
of such sets and hence uncountably many syntactic models of the lambda calculus. These
sufficient and necessary conditions in the case of lambda calculus do not immediately carry
over to orthogonal term rewriting systems. This hinges on the fact that in infinitary lambda
calculus the set of rootactive terms coincides with the set of hypercollapsing terms. This
is in general not the case for arbitrary orthogonal infinitary rewriting systems: infinitary
combinatory logic is an example of an infinitary rewriting system with rootactive terms that
are not hypercollapsing. The reduction for combinatory logic is called w-reduction [1, 9].
In this paper we look at the following questions: what are the (necessary and) sufficient
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2 Infinitary Combinatory Logic

conditions for the infinitary combinatory logic with w⊥-reduction to be (1) confluent?, (2)
normalising? and (3) the combination, confluent and normalising?.

Regarding confluence we will show that infinitary combinatory logic with w⊥-reduction
is confluent for the traditional set of axioms of meaningless sets without assuming the ax-
iom of rootactiveness. We give uncountably many examples of meaningless sets satisfying
rootactiveness. Each one gives rise to a model of finite combinatory logic, called combin-
atory algebra [1]. We also show that these models are not λ-algebras, i.e. there exist two
terms whose corresponding translations into lambda calculus are β-convertible but they have
different interpretation in the model.

By studying the overlap cases between w and ⊥-reduction, we realise that we can weaken
the axiom of overlap. Combining weak overlap with rootactiveness and the axioms of clos-
ure under reduction, expansion and indiscernibility gives a sufficient condition so that the
infinitary combinatory logic with w⊥-reduction is confluent and normalising. We also show
that the axioms of hypercollapseness, overlap and closure under reduction are necessary
conditions for confluence.

The paper is organised as follows. Section 2 gives a brief overview of infinitary rewrit-
ing in the setting of combinatory logic. Section 3 works out what the traditional theory
of meaningless sets means for infinitary combinatory logic. Section 4 studies the axioms of
closure under expansion and substitution. Section 5 gives concrete examples of meaningless
sets and describes some of the structure of the lattice of meaningless sets. Section 6 shows
an application to combinatory algebras. Section 7 explores sufficient and necessary condi-
tions for confluence. Section 8 discusses some open problems and shows an example of a
normalising infinitary combinatory logic that does not satisfy rootactiveness.

2 Infinitary Combinatory Logic

We will define infinitary combinatory logic assuming familiarity with basic notions and
notations from combinatory logic, lambda calculus [1, 9] and some familiarity of infinite
term rewriting [5]. The set CL of finite CL-terms is defined by induction from the following
grammar:

M ::= x | K | S |MM.

The set CL∞ of finite and infinite CL-terms over a given set of variables is defined by
coinduction from the same grammar.

I Definition 2.1 (w-reduction). The w-rules are extended to CL∞.

KMN →w M

SMNP →w MP (NP )

The w in→w stands for weak reduction [1, 3]. The first rule is called K-rule and the second
S-rule. A term is a K-redex (or S-redex) if it is of the form KMN (or SMNP ).

Above we have presented CL in the traditional applicative format: this means that the
infix application symbol · is suppressed, outermost brackets dropped and the usual bracket
convention of association to the left is followed: e.g., xyz actually stands for ((x · y) · z).
Alternatively we could have presented the terms of CL and CL∞ and the two rules in the
format of first order term rewriting by adding an explicit binary application symbol Ap
to the syntax M ::= x | K | S | Ap(M,N) with the proviso that we will read MN for
Ap(M,N) [9]. Terminology and notation for infinite term rewriting in the latter format
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translate readily to CL presented in its applicative format. E.g. we say that S and x have
depth 3 in the term Sxyz, whereas the depth of y and z is respectively 1 and 2.

·
�� 77 0

·
		 77 z 1

·
�� 55 y 2

S x 3

The distance d(M,N) between two terms is defined as 2−n where n is the length of the
shortest common position p ofM and N such thatM and N differ at p. With this notion of
distance the set CL of finite terms becomes a metric space and CL∞ its metric completion.

Metavariables in (infinitary) combinatory logic will be denoted by M,N,P, . . . and con-
texts by C,D, . . .. Simultaneous substitution will be denoted by Mσ, where σ is a substitu-
tion of variables by terms.

One step reduction→w on CL and CL∞ is the smallest binary relation on CL, respectively
CL∞ containing the w-rules and closed under contexts. Let α be an ordinal.

I Definition 2.2 (Strongly converging reduction sequence). A strongly converging reduction
sequence of length α is a sequence of reduction steps (Mβ →w Mβ+1)β<α such that for every
limit ordinal λ ≤ α:
1. the sequence of terms (Mβ)β≤λ is a transfinite Cauchy sequence, that is

lim
β→λ

Mβ = Mλ

2. limβ→λ dβ =∞ where dβ is the depth of the redex contracted at Mβ →w Mβ+1.

We will denote this by M0 →→→α
w Mα (or just M0 →→→w Mα). We will use the notation

M →→w N for a finite reduction from M to N .
Because CL is a left-linear system the Compression Lemma holds, which says that

whenever M0 →→→α
w Mα then M0 →→→≤ωw Mα, i.e. there is an strongly converging reduction

from M0 to Mα of length at most ω.
We will use the following abbreviations for terms:

I = SKK, Ω = SII(SII),
Mω = M(M(M(. . .))) Cω = C[C[C[. . .]]] if C[ ] is a context.

Although the names I and Ω may feel familiar from lambda calculus, one should beware
that their reduction behaviour is slightly different: Ix→→w x takes two steps, while Ω→→w Ω
takes five. For the complete reduction graph of Ω in CL see, see [9]. We give some examples
of interesting infinite terms.

I Example 2.3. 1. It is easy to verify that the infinite term Y = (SI)ω is an infinite fixed
point combinator

(SI)ωM = SI(SI)ωM →w IM((SI)ωM)→w M((SI)ωM).

To verify that a finite term is a fixed point combinators usually takes more steps to
prove. See for instance the shortest fixed point combinator [17].

YTromp = SSK(S(K(SS(S(SSK))))K).

The infinite term (SI)ω can be obtained as limit of a strongly convergent reduction
starting from the finite term YTromp(SI).

RTA’12



4 Infinitary Combinatory Logic

2. Since Y(SII) →→w (Y(SII))(Y(SII)) we find that if we continue this process, Y(SII)
strongly converges to an infinite normal form, the binary tree of applications:

X = (((. . .)(. . .))((. . .)(. . .)))(((. . .)(. . .))((. . .)(. . .))).

3. The term SωXX is self-looping: SωXX = S(Sω)XX→w (Sω)X(XX) = SωXX.
4. Let CM [ ] abbreviate the context K[ ]M . Then CωM is self-looping for any M . Redexes

of the form CM [x]→w x are called collapsing.

Let Λ∞ is defined by coinduction from the following grammar.

M ::= ⊥ | x | (λxM) | (MM)

Combinator terms translate directly into lambda terms.

I Definition 2.4 (Translation from CL∞ to Λ∞). For M ∈ CL∞ we define Mλ ∈ Λ∞ by
coinduction as follows: xλ = x, Kλ = λxy.x, Sλ = λxyz.xz(yz), (PQ)λ = PλQλ.

We define →h
w as the restriction of →w to w-redexes in the head position where M is in

the head position of N if N = MP1 . . . Pn.

I Definition 2.5 (Skeleton). We define the skeleton of a term by corecursion as follows.

skel(M) = N if M →→h
w N , and N is either x, K or S

skel(M) = skel(N)skel(P ) if M →→h
w NP , while NP 6→→h

w Q for any w-redex Q
skel(M) = M otherwise

The skeleton of a term can be computed by a depth-first leftmost strategy that contracts
all w-redexes not contained in a rootactive term (see Definition 3.4). We have that M →→→w

skel(M).

3 Axioms of Meaningless Sets in Infinitary Combinatory Logic

Finite combinatory logic CL is confluent for finite w-reduction. In contrast infinitary com-
binatory logic CL∞ is not confluent for strongly converging w-reduction. The reason be-
hind this negative result is that the K-rule is a collapsing rule with a multivariable left-
hand side. The infinite tower of collapsing redexes Cx[Cy[Cx[Cy[. . .]]]], that is the term
K(K(K(K(. . .)y)x)y)x, can strongly converge to both Cωx and Cωy , which are self-looping
by Example 2.3. Hence Cωx and Cωy can not reduce further to a common reduct [6].

I Definition 3.1 (Hypercollapsing Term). We say that a term M ∈ CL∞⊥ is hypercollapsing,
if any reduct of M can further reduce to a collapsing redex. We denote the set of hypercol-
lapsing terms by H.

Confluence can be restored if we identify hypercollapsing terms with ⊥ [8]. For this, we
extend CL∞ with a fresh symbol ⊥. We define CL∞⊥ by coinduction from the grammar:
M ::= x | ⊥ | K | S | MN . We also add a reduction rule →⊥U that allows us reduce terms
from a chosen subset U ⊆ CL∞ to ⊥. This is reminiscent to BΩ-reduction in [1] where the
unsolvables play the role of undefined terms. We need some notation to define this ⊥-rule.

I Definition 3.2 (⊥-instance). Let U ⊆ CL∞ and M,N ∈ CL∞⊥ . We say that M is a ⊥-
instance of N , notation M �U N , if M is obtained from N by replacing some (possibly
infinitely many) subterms of N in U by ⊥. We define U⊥ ⊆ CL∞⊥ as U⊥ = {M | ∃N ∈
U .M �U N}.
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I Definition 3.3 (⊥U -reduction). Let U ⊆ CL∞. We define the ⊥U -rule on CL∞⊥ : M → ⊥ if
M ∈ U⊥ andM 6= ⊥. The one step reduction→⊥U is the smallest binary relation containing
⊥U and closed under contexts and substitutions.

Occasionally, we may denote ⊥U just by ⊥. We denote finite ⊥-reductions by →→⊥ and
strongly convergent reductions by →→→⊥.

I Definition 3.4 (Rootactive Term). We say that a term M ∈ CL∞⊥ is rootactive, if any
reduct of M can further reduce to a redex, i.e. either a K or an S-redex. We denote the set
of rootactive terms by R.

All hypercollapsing terms are rootactive. The converse is not true. Examples of terms
that are rootactive but not hypercollapsing are the term Ω, any term of the form SωMN

(in particular, the term SωXX) and terms of the form DωM (where Dω is the infinite tower
of contexts of the form S(K[ ])I)) for any M .

Note that unlike in lambda calculus [7, 8] we have that in combinatory logic the set of
hypercollapsing terms does not coincide with the rootactive terms..

I Definition 3.5 (Hypercollapseness). We say that a set U ⊆ CL∞ satisfies the Axiom of
hypercollapseness if H ⊆ U .

I Definition 3.6 (Rootactiveness). We say that a set U ⊆ CL∞ satisfies the Axiom of
rootactiveness if R ⊆ U .

I Definition 3.7 ( U←→ and U=). Let M,N ∈ CL∞⊥ . We write M U←→ N , if N can be obtained
from M by replacing some (possibly infinitely many) subterms of M in U by other terms in
U . We write t U= s for the transitive closure of U←→.

I Definition 3.8 (Indiscernibility). We say that a set U ⊆ CL∞ satisfies the Axiom of indis-
cernibility if for all M,N ∈ CL∞ such that M U←→ N , we have that M ∈ U iff N ∈ U .

I Definition 3.9 (Closure under w-reduction). We say that a set U ⊆ CL∞ satisfies the Axiom
of closure under w-reduction if M ∈ U and M →→→w N implies N ∈ U for all M,N ∈ CL∞.

The general formulation of the next axiom of overlap says that if a redex M overlaps a
subterm, and this subterm is in U thenM ∈ U . For combinatory logic this means concretely:

I Definition 3.10 (Overlap). We say that a set U ⊆ CL∞ satisfies the axiom of overlap if
the following conditions holds for all M,N,P ∈ CL∞:
1. If K ∈ U or KM ∈ U then KMN ∈ U .
2. If S ∈ U , SM ∈ U or SMN ∈ U then SMNP ∈ U .

I Definition 3.11 (Meaningless Set). A set U ⊆ CL∞ is called a set of meaningless terms
(meaningless set for short), if it satisfies the axioms of hypercollapseness, closure under
w-reduction, indiscernibility and overlap. These four axioms are called the axioms of mean-
inglessness.

I Theorem 3.12 (Meaninglessness implies Confluence modulo U [8, 5]). If U is a set of
meaningless terms, then (CL∞⊥ ,→→→w) is confluent modulo U , i.e. if M ←←←w

U=→→→w N implies
P →→→w

U=←←←w Q.

I Theorem 3.13 (Indiscernibility implies Confluence of ⊥U -reduction [8, 5]). Let U ⊆ CL∞.
If U satisfies indiscernibility then (CL∞⊥ ,→→→⊥U ) is confluent.

RTA’12



6 Infinitary Combinatory Logic

I Theorem 3.14 (Postponement [8, 5]). Let U ⊆ CL∞. If M →→→w⊥U N then there exists P
such that M →→→w P →→→⊥U N . (No properties of U need to be assumed.)

I Theorem 3.15 (Rootactiveness implies Normalization [8, 5]). If U ⊆ CL∞ satisfies rootact-
iveness, then (CL∞⊥ ,→→→w⊥U ) is normalising.

I Theorem 3.16 (Rootactiveness and Meaninglessness implies Confluence [8, 5]). If U ⊆ CL∞

is a meaningless set that satisfies rootactiveness, then (CL∞⊥ ,→→→w⊥U ) is confluent.

I Notation 3.17 (Normal Form). If (CL∞⊥ ,→→→w⊥U ) is confluent and normalising, then every
term M in CL∞⊥ has a unique normal form, that we denote by nfU (M). We also write
nfU (X) = {nfU (M) |M ∈ X} for X ⊆ CL∞⊥ .

Next we prove that (CL∞⊥ ,→→→w⊥U ) is confluent for meaningless sets U that do not ne-
cessarily satisfy rootactiveness with tools from from [8, 5]. The earlier papers bypassed this
result, because their interest lay in extensions (CL∞⊥ ,→→→w⊥U ) that are both confluence and
normalising.

I Theorem 3.18 (Meaninglessness implies Confluence). If U is a meaningless set, then
(CL∞⊥ ,→→→w⊥U ) is confluent.

Proof. Let M outU−→w N denote one w-step where the contracted redex in M →w N is not
contained in any subterm P of M which is in U .

M

w

�������
(1)

w

�� ��
.�� (1)

w⊥U

{{{{x{{xxxxxxxxxxxxxxx

w⊥U

## ##F##FFFFFFFFFFFFFFF

•
w

����
��� (3)

•⊥Uoooo_oo

w outU����
���

(2) • ⊥U // //_//

outU w
����
��� (3)

•
w

����
���

•

⊥U �� ��
9�� (4)

•
⊥U

oooo_oo

�� ��
=��

•
⊥U

// //_//
⊥U ⊥U

�������
(4)

•

⊥U�������
•

⊥U && &&M&&

•
⊥U

oooo_ oo
⊥U

// //_//

(4)

•

⊥Uxxxxqxx
•

Suppose we are given two w⊥U -reductions starting from M . Using Postponement The-
orem 3.14 we factor both reductions in a w-reduction followed by a ⊥U reduction. This
gives us the two triangles (1). Next, from Theorem 3.12, we find two w-reductions ending
in terms that are identical up to subterms in U . If we factor both reductions into an outside
U w-reduction (Lemma 12.9.20 in [5], which needs overlap and closure under reduction),
followed by an inside U w-reduction we obtain (2). And (3) follows from commutation of
outside U w-reduction with →→→⊥U (Lemma 12.9.19 in [5], which needs overlap), while (4) is
implied by Theorem 3.13 (confluence of →→→⊥). J

Note that the previous theorem and proof holds for arbitrary orthogonal term rewriting
systems as well.
I Remark. In [16], we could prove that confluence implies normalisation for infinitary lambda
calculus with β⊥U -reduction defined with any set of finite and infinite terms U ⊆ Λ∞. In the
case of combinatory logic, this does not hold. For example, take U = H. By Theorem 3.18
we have that (CL∞⊥ ,→→→w⊥H) is confluent. But it is not normalising, because the term Ω,
which is rootactive but not hypercollapsing, is not normalising.
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4 Axioms of Closure under Expansion and Substitution

We now introduce and study some axioms involving closure under expansion and substitu-
tion.

I Definition 4.1 (Closure under Expansion and Substitution). Let U ⊆ CL∞.

1. U satisfies the axiom of closure under w-expansion, if for all M ∈ U N ∈ U whenever
M →→→w N .

2. U satisfies the axiom of closure under substitution, if M ∈ U implies Mσ ∈ U for all
M ∈ CL∞ and substitutions σ from variables to terms in CL∞.

3. We say that U satisfies the axiom of closure under w⊥-expansion from ⊥, if for all M ∈
CL∞, if M →→→w⊥U ⊥ then M ∈ U .

I Lemma 4.2. Let U be a subset of CL∞. Then U satisfies both the axiom of indiscernibility
and the axiom of closure under w-expansion if and only if satisfies the axiom of closure under
w⊥-expansion from ⊥.

Proof. Assume M →→→w⊥ ⊥ for some M ∈ CL∞. Then M →→→w N →→→⊥U ⊥ for some
N ∈ CL∞⊥ by postponement. We prove that N ∈ U by induction on the length β of
N →→→⊥U ⊥. Note that the last step should be a successor ordinal β = α + 1. Hence,
N →→→⊥ N ′ →⊥ ⊥ for some N ′. Let N |p denote the subterm of N at position p. For every
position p of N ′ such that N ′|p = ⊥, we have that N |p →→→⊥ ⊥ is shorted than β. By
induction hypothesis, N |p ∈ U . By indiscernibility, N ∈ U . Closure under w-expansion
then gives us the desired M ∈ U . For the converse, assume first that M,N ∈ CL∞ such
that M U←→ N . There exists P such that P �U M and P �U N . If M ∈ U then P →⊥ ⊥.
Hence, N →→→⊥ P →⊥ ⊥. Since U satisfies closure under w⊥-expansion from ⊥, we get
N ∈ U . Hence indiscernibility holds. Second, assuming that M →→→w N and N ∈ U , we get
M →→→w N →⊥U ⊥. By closure under w⊥-expansion from ⊥ we can concludeM ∈ U . Hence
closure under w-reduction holds. J

I Lemma 4.3. If a meaningless set U ⊆ CL∞ satisfies the axiom of closure under w⊥-
expansion from ⊥, then it also satisfies closure under substitution.

Proof. Suppose M ∈ U . Then M →⊥ ⊥. Because the reduction →⊥ is closed under
substitution by definition we get Mσ →⊥ ⊥. But then Mσ ∈ U follows from closure under
w⊥-expansion from ⊥. J

I Definition 4.4 (Set of w⊥-expansions from ⊥). Let U ⊆ CL∞. We define U = {M ∈
CL∞ |M →→→w⊥U ⊥}.

It is a immediate that U satisfies closure under w⊥-expansion from ⊥.

I Lemma 4.5 (U and U define the same reduction). Let U be a meaningless set. We have
that M →→→w⊥U

N iff M →→→w⊥U N .

Proof. By induction on the length of the reduction sequence. We only show the case when
the length is one. Let M = C[P ]→⊥U

C[⊥] = N . Then, P �U Q and Q ∈ U . By definition
of U , we have that Q →→→w⊥U ⊥. Since P �U Q, we have that P is obtained from Q by
replacing some of its subterms in U by ⊥. Each of these subterms w⊥U -reduces to ⊥ so
that we can construct a reduction sequence Q →→→w⊥U P . By Confluence (Theorem 3.13),
we have that P →→→w⊥U ⊥. Hence, C[P ]→→→w⊥U C[⊥]. The converse is trivial. J

RTA’12



8 Infinitary Combinatory Logic

As consequence of this lemma we have U = U and we obtain the corollary:

I Corollary 4.6. If U is meaningless then (CL∞⊥ ,→→→w⊥U
) is confluent. Moreover, if U

satisfies rootactiveness, then (CL∞⊥ ,→→→w⊥U
) is normalising.

5 Meaningless Sets

In this section we will show that there are uncountably many meaningless sets in infinitary
combinatory logic. This contrasts with the handful of meaningless sets (among which the
rootactive terms) known for orthogonal infinitary term rewriting systems [8].

We will identify sets of meaningless terms that define the same reduction. Hence, by
Lemma 4.5, we will consider those sets of meaningless terms that satisfy U = U . Or,
equivalently, using Lemma 4.2, we will restrict ourselves to sets of meaningless terms that
satisfy the extra axiom of closure under w-expansion.

We will show that the class LCL of sets of meaningless terms that satisfy w-expansion
is a bounded lattice ordered by set inclusion. The meet (denoted by u) coincides with the
intersection. The join U t V is the least meaningless set containing U ∪ V. By construction
the set CL∞ is the largest element of LCL and H the smallest one.

The lattice LCL has a somewhat richer structure than the corresponding lattice of mean-
ingless sets of lambda calculus [16]. Below CL∞ we find the unsolvables as the next largest
set, as the notion of solvability for finite combinatory logic extends to CL∞ and CL∞⊥ [1, 3].

I Definition 5.1 (Solvable Term). Let M ∈ CL∞⊥ .
1. A closed term M is solvable if there exist P1 . . . Pk such that MP1 . . . Pk →→w I.
2. A term M is solvable if Mσ is solvable for some substitution σ replacing all variables in

M by closed terms from CL∞. Terms that are not solvable are called unsolvable.
3. NS = {M ∈ CL∞ |M is not solvable}.
We will first show that NS is indeed an element of LCL, before showing that NS is the
largest element in LCL below CL∞. We need some useful lemmas to do so. The first lemma
follows by induction on the length of the reduction sequence and it holds for any set U .

I Lemma 5.2. If P →→→w P
′ and P �U M then M →→→w M

′ and P ′ �U M ′ for some M ′

I Lemma 5.3. If Q �NS N and N →→w I then Q→→w I.

Proof. By induction on the length n of the reduction sequence. If n = 0 then Q �NS N = I
and Q = I. If n > 0 then we can only have that either N = KN1 . . . Nk or N = SN1 . . . Nk+1
with k ≥ 2 because the normal form of N is I. We do the case N = SN1 . . . Nk with k ≥ 3
where the reduction sequence is N = SN1 . . . Nk →w N1N3(N2N3)N4 . . . Nk →→w I. Hence
N and all its prefixes SN1 . . . Ni for i ≤ k are solvable. If Q �NS N then Q = SQ1 . . . Qk
with Qi �NS Ni for 1 ≤ i ≤ k. By IH, Q1Q3(Q2Q3)Q4 . . . Qk →→w I. Hence Q→→w I. J

I Lemma 5.4. Let P ∈ CL∞⊥ such that P �NS M . Then, P is solvable iff M is solvable.

Proof. Suppose P is solvable. Then there exist a substitution σ and terms Q1, . . . , Qn such
that PσQ1 . . . Qn →→w I. By Lemma 5.2, MσQ1 . . . Qn →→w I. Hence, M is solvable.

Suppose M is solvable. Then, there exist a substitution σ and terms Q1, . . . Qn such
thatMσQ1 . . . Qn →→w I. Assume that P is unsolvable. Then whenever PσQ1 . . . Qn →→w Q

it follows that Q 6= I. Since PσQ1 . . . Qn �NS MσQ1 . . . Qn we get by Lemma 5.2 that
MσQ1 . . . Qn →→w N for some Q �NS N . By confluence of w⊥R-reduction, we have that
N →→→w⊥R I. Hence by postponement we can factor this reduction into a w-reduction
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followed by a ⊥U -reduction to I. Because I does not contain any ⊥, the latter must be
necessarily must be of zero length. Hence N →→w I. Applying Lemma 5.3, we find that then
also Q→→w I. Hence P is solvable as well. J

I Lemma 5.5. If M ∈ U and MP1 . . . Pn →→w Q then Q = NPi+1 . . . Pn where N ∈ U .

Proof. This is proved by induction on the length of the reduction. It is enough to consider
one step MP1 . . . Pn →w Q. If the w-redex is inside M or one of the Pi’s, the claim is
immediate. If the w-redex is of the form MP1 . . . Pi for i > 0 then by overlap, we have that
MP1 . . . Pi ∈ U . By closure under reduction, the contracted redex is in U . J

I Theorem 5.6 (Meaningless Set NS). The set NS is a meaningless set. Moreover, it is the
largest meaningless set satisfying the axiom of closure under w-expansion which is a proper
subset of CL∞. In particular, NS = NS ⊂ CL∞.

Proof. Let R be a rootactive term and σ a substitution. Then Rσ is also rootactive and
RσP1 . . . Pn can not reduce to I. Therefore all rootactive terms are unsolvable and NS
satisfies rootactiveness.

To prove closure under w-reduction, suppose M is unsolvable and M →→→w N . Assume
N is solvable. Then NσP1 . . . Pn →→→w I for some σ, P1, . . . , Pn. Now M is solvable too,
because MσP1 . . . Pn →→→w N

σP1 . . . Pn →→→w I. Contradiction. Hence N is unsolvable.
Overlap is also easy to prove. Suppose SMNP is solvable. Then there exist σ,Q1, . . . , Qn

such that (SMNP )σQ1 . . . Qn →→→w I. Hence, S, SM and SMN are also solvable. Overlap
with K goes similar.

We now prove indiscernibility. If M N S←→ N , then both P �NS M and P �NS N for
some P ∈ CL∞⊥ . It follows from Lemma 5.4 that M ∈ NS iff N ∈ NS.

Next we prove that NS is closed under under w-expansion. SupposeM →→→w N . Assume
M is solvable. If we show that N is solvable, then closure under w-reduction follows by
contraposition. Solvability of M implies that MP1 . . . Pn →→→w I for some Pi. Applying
Theorem 3.12 on confluence modulo hypercollapsing terms, we get N →→→w I, as I does not
contain any hypercollapsing subterms. Hence N is solvable.

Finally we prove that NS is the largest meaningless set closed under under w-expansion,
which is a proper subset of CL∞. Now, suppose that M ∈ U and M 6∈ NS. Hence, there
exists a substitution σ and terms P1, . . . Pn such that MσP1 . . . Pn →→w I = SKK. By
Lemma 5.5, we have that either S, SK or SKK are in U . For any term N , we have that
SKKN →→w N . By the axioms of overlap and closure under reduction, N ∈ U . J

Note that a term in CL∞ has either one of the following forms: (1) S, SP , SPQ, K, KP

or KPQ; (2) xP1 . . . Pn for n ≥ 0; (3) ((. . .)P2)P1; (4) SP1 . . . Pn for n ≥ 3; (5) KP1 . . . Pn
for n ≥ 2. Having this in mind we give the following definition, reminiscent of the analogous
Definition 4.1 in [16] for infinitary lambda calculus.

I Definition 5.7 (Head Normal Form). Let M ∈ CL∞⊥ .
1. M is in head normal form (hnf or w-hnf) if it is one of the forms K, KP , S, SP , SPQ

or xP1 . . . Pn.
2. NHF = {M ∈ CL∞ | there is no N such that M →→→w N and N is in hnf}.

The set NHF is a set of meaningless terms that satisfies closure under w-expansion.
Terms in NHF are exactly the opaque terms, i.e. their reducts cannot overlap any redex [8].
Unlike lambda calculus, terms with head normal forms do not correspond to solvable terms
in combinatory logic. For example, the head normal form KΩ is unsolvable in combinatory
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Figure 1 A fragment of LCL: single (double) arrows indicate that the corresponding open
intervals are singletons (uncountable). A similar fragment can be built by replacing R by H in the
above diagram.

logic. The reason is that head normal forms in combinatory logic are related to weak head
normal forms in lambda calculus: M is a hnf in combinatory logic iff Mλ is a weak head
normal form in lambda calculus [4]. To define many more elements of LCL we define the
following forms and sets:

I Definition 5.8. 1. AYX = {M ∈ CL∞ | M →→→w N and N is a X,Y -ha} where M is a
head active form relative to X and Y (X,Y -ha) if M = RP1 . . . Pk, R ∈ Y and Pi ∈ X
for 1 ≤ i ≤ k.

2. A∞X = {M ∈ CL∞ | M →→→w N and N is a X-il } where M is an infinite left spine form
relative to X (X-il) if M = (. . . P2)P1 and Pi ∈ X for all i.

3. K∞ = {M ∈ CL∞ |M →→→w Kω} where Kω = K(K(K(. . .))).
4. S∞ = {M ∈ CL∞ |M →→→w Sω} where Sω = S(S(S(. . .))).

When X = CL∞ in AYX or A∞X we drop the phrase relative to X and the subscript X.

Using the H or R as a base we can make two sublattices of LCL as depicted in Figure 1.
The top elements of these fragments, RtK∞tS∞tA∞ and HtK∞tS∞tA∞ are proper
subsets of NS, because neither of the two sets contain the unsolvable S(K(S(K(. . .)))).
Note that NHF = AR ∪ A∞ = R t A∞. The intervals of Figure 1 that have uncountable
cardinality, indicated by ⇒, follow from Theorem 5.9 and the fact that nfNS(CL∞) ∩ CL∞

is uncountable.

I Theorem 5.9 (Meaningless Sets). Let X ⊆ nfNS(CL∞) ∩ CL∞ and Y ∈ {R,H}. The
following sets are sets of meaningless terms that are closed under w-expansion: AYX , AYX ∪
A∞X , AY ∪ A∞X , AY ∪ K∞ ∪ A∞X , AY ∪ S∞ ∪ A∞X and AY ∪ S∞ ∪ K∞ ∪ A∞X .

Proof. It is straightforward to show that these sets satisfy rootactiveness, overlap, closure
under w-reduction and closure under w-expansion. We show that U = ARX satisfies indis-
cernibility for X ⊆ nfNS(CL∞)∩ CL∞. If M U←→ N then there exists P such that P �U M
and P �U N . By Lemma 5.2, we can assume that P = skel(P ). We discuss cases according
to the shape of P . The interesting case is when P = ⊥P1 . . . Pn. Then M = M0M1 . . .Mn

and N = N0N1 . . . Nn. Since X ⊆ nfNS(CL∞), we have that Pi = Mi = Ni for all 1 ≤ i ≤ n.
It is clear that M ∈ ARX iff N ∈ ARX . J
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6 Application to Combinatory Algebras

Models for combinatory logic have a simple structure: they are combinatory algebras. Models
for lambda calculus are λ-algebras which are combinatory algebras that satisfy some further
properties. We show that there is an uncountable number of combinatory algebras that are
not λ-algebras. We recall the definition of combinatory and λ-algebras from [1].

I Definition 6.1 (Combinatory Algebra). A combinatory algebra is a structure (X, ·, k, s)
where · is a binary operation on X and k, s ∈ X satisfy kxy = x and sxyz = xz(yz).

Given a valuation ρ mapping variables to terms in X we interpret terms of CL in a com-
binatory algebra (X, ·, k, s) as follows: [[x]]ρ = ρ(x), [[K]]ρ = k, [[S]]ρ = s and [[MN ]]ρ =
[[M ]]ρ · [[N ]]ρ.

I Definition 6.2 (Lambda Algebra). A combinatory algebra is a λ-algebra ifMλ =β Nλ then
[[M ]]ρ = [[N ]]ρ for all M,N ∈ CL.

I Theorem 6.3 (Combinatory Algebra induced by Infinitary Combinatory Logic). Let U ⊂ CL∞

be closed under w⊥-expansions from ⊥. If (CL∞⊥ ,→→→w⊥U ) is confluent and normalising, it
induces a combinatory algebra that is not a λ-algebra which is given by (nfU (CL∞), ·,K,S)
where M ·N = nfU (MN).

Proof. Assume U ⊂ CL∞. A term is interpreted by its normal form. In a λ-algebra, the
term K should be equal to S(S(KS)(S(KK)K))(K(S(KK)). Since these two terms are in
w-normal form, they will have the same w⊥U -normal form only if they both reduce to ⊥.
This is not possible, as then K should belong to U , which would imply by Lemma 7.2 that
U = CL∞. Contradiction. J

I Corollary 6.4 (Uncountable Combinatory Algebras). There is an uncountable number of
combinatory algebras that are not λ-algebras.

Proof. By Theorem 5.9, there are uncountably many meaningless sets satisfying rootactive-
ness. Each of them gives rise to a different, confluent and normalising infinitary ⊥-extension
of CL by Theorems 5.9 and 3.16. By Theorem 6.3 none of the induced combinatory algebras
is a λ-model. J

7 Weakening the Axioms of Meaningless Terms

In this section, we first show that confluence implies hypercollapseness, closure under w-
reduction, indiscernibility and a weaker form of overlap. We can prove the converse only
under the extra condition of rootactiveness.

To weaken the axiom of overlap, we inspect when overlap between ⊥-reduction and w-
reduction occurs. Overlap happens when the ⊥-redex is of the form KM , SM or SMN .
This gives a divergence that can be resolved with the axiom of overlap, e.g.

SMNP
⊥

yysssss w
''PPPPP

⊥P

⊥ %%

MP (NP )
⊥

ww⊥

There is, however, another way of resolving this divergence. Suppose that M = (KW ) for
some W ∈ U and N = I. Then, we have that S(KW )IP →→w WP →⊥ ⊥. This is not
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12 Infinitary Combinatory Logic

the only alternative to resolve the divergence. Suppose M = S(KK)W for some W ∈ U ..
Then, we have that S(S(KK)W )NP →→w WP →⊥ ⊥. In general, there is an alternative
resolution of the divergence whenever there exists a W ∈ U such that MP (NP )→→→w WP .

I Definition 7.1 (Weak Overlap). Let U ⊆ CL∞. We say that U satisfies the axiom of weak
overlap if we have that for all M,N,P ∈ CL∞:
1. If K or KM ∈ U then KMN ∈ U .
2. If S or SM ∈ U then SMN ∈ U or SMNP ∈ U .
3. If SMN ∈ U then SMNP ∈ U ∪ R or SMNP →w MP (NP ) →→→w WP and W ∈
U ∩ (AR ∪ A∞).

Clearly, overlap implies weak overlap.

I Lemma 7.2 (K or S in U implies all Terms are in U). Let U ⊆ CL∞ satisfy closure under
w⊥-expansion from ⊥ and (CL∞⊥ ,→→→w⊥U ) be confluent. If K ∈ U or S ∈ U then U = CL∞.

Proof. Suppose that K ∈ U . Kxy reduces to ⊥xy and to x. By confluence, these two terms
should have a common reduct. The only possibility is that this reduct is ⊥. By closure
under w⊥-expansion from ⊥, x ∈ U . By Lemma 4.3, M ∈ U for all M ∈ CL∞. Suppose
now that S ∈ U . We have that SKxy →→w y and SKxy →⊥ ⊥Kxy. By confluence, y and
⊥Kxy have a common reduct Q. The only possibility is that Q = ⊥. Hence, y ∈ U . By
Lemma 4.3, U satisfies closure under substitution and hence, M ∈ U for all M ∈ CL∞. J

The next lemma is proved by induction on the length of the reduction sequence.

I Lemma 7.3. If M →→→w N and all occurrences of x in M are in a term of the form xy

then so are all occurrences of x in N .

I Theorem 7.4 (Necessary Conditions for Confluence). Let U ⊆ CL∞ be closed under w⊥-
expansion from ⊥. If (CL∞⊥ ,→→→w⊥U ) is confluent, then U satisfies the axioms of hypercol-
lapseness, closure under w-reduction, indiscernibility and weak overlap.

Proof. If U = CL∞ then it satisfies all the axioms. From now on, suppose that U ( CL∞.
We have that U satisfies indiscernibility by Lemma 4.2.

We now prove that U satisfies closure under w-reduction as follows. Suppose M →→→w N

and M ∈ U . It follows from M →⊥ ⊥ and confluence that N →→→w⊥U ⊥. By closure under
w⊥-expansion from ⊥, we have that N ∈ U .

We prove that U satisfies hypercollapseness by showing that all hypercollapsing terms
reduce to ⊥. The infinite term Cx[Cy[Cx[Cy[. . .]]]] can reduce to both Cω

x and Cω
y . By

confluence, both Cω
x and Cω

y reduce to some common term Q. By postponement, Cω
x →→→⊥ Q

and Cω
y →→→⊥ Q because Cω

x and Cω
y can only ω-reduce to themselves. Since Cx and Cy

have no prefix in common, Q should be ⊥.
Now suppose P is an arbitrary hypercollapsing term. Then, we have P →→→ CM1 [CM2 [. . .]]

where CMi [ ] = (K[ ]Mi) for some collapsing tower CM1 [CM2 [. . .]]. The infinite collapsing
tower CM1 [Cx[CM2 [Cx[. . .]]]] can reduce both to CM1 [CM2 [. . .]] and Cx[Cx[. . .]]. Since
Cx[Cx[. . .]] reduces to ⊥, we find that by confluence, also CM1 [CM2 [. . .]] should reduce to
⊥. Hence, all the hypercollapsing terms reduce to ⊥. By closure under ω⊥-expansion from
⊥, we have that H ⊆ U .

We prove that U satisfies weak overlap by proving the clauses of Definition 7.1.
1. If K ∈ U then by Lemma 7.2, we would have U = CL∞. Assume KM ∈ U . Then,

KMN →w M and KMN →⊥ ⊥N for all N . Hence by confluence M and ⊥N must
have a common reduct for any N . Hence in particular ⊥x and ⊥y must have a common



Paula Severi and Fer-Jan de Vries 13

reduct, which can only be ⊥. Hence also M reduces to ⊥ and therefore we see that
KMN ∈ U by closure under w-expansion.

2. If S ∈ U then by Lemma 7.2 we would have U = CL∞. Suppose SM ∈ U and x, y

do not occur in M . Then, SMxy reduces to ⊥xy and to My(xy). They should both
have a common reduct N . We have three cases. The first case is when N = ⊥xy.
Then, My(xy) →→→w Wxy for some W ∈ U . By Lemma 7.3, this is not possible. The
second case is when N = ⊥y. By closure under w⊥-expansion from ⊥, SMx ∈ U . By
Lemma 4.3, SMN ∈ U for all N ∈ U . The third case is when N = ⊥. By closure under
w⊥-expansion from ⊥, SMxy ∈ U . By Lemma 4.3, SMNP ∈ U for all N,P ∈ CL∞.

3. By closure under substitutions (Lemma 4.3), it is enough to consider P = x. Assume
SMN ∈ U and SMNx 6∈ U . By confluence, ⊥x and skel(SMNx) must have a common
reduct. This common reduct cannot be ⊥ because SMNx 6∈ U . Then, the common
reduct should be ⊥x, i.e. skel(SMNx)→→→w⊥U ⊥x. By postponement, skel(SMNx)→→→w

Q→→→⊥ ⊥x. Hence, Q = Wx andW →→→⊥ ⊥. By closure under expansion from⊥,W ∈ U .
Suppose skel(SMNx) is not rootactive, then it has one of the following forms:

a. skel(SMNx) is yP1 . . . Pk. Then, Pk = x and yP1 . . . Pk−1 ∈ U . It is not difficult to
show that U = CL∞.

b. skel(SMNx) is K or S. This case is impossible because K or S cannot reduce to ⊥x.
c. skel(SMNx) is KP or SP . Then P = x and either W ∈ U is K or S. By Lemma 7.2

we would have U = CL∞.
d. skel(SMNx) is SP1P2. Then, P2 = x and SP1 →→→w W . By closure under w-expansion,

SP1 ∈ U . Similarly to case 3), we have that SP1x ∈ U and hence, SMNx→→→w⊥U ⊥.
By closure under w⊥-expansion from ⊥, SMNx ∈ U . This is a contradiction.

e. skel(SMNx) is either a head active form or a infinite left spine. So is W . Hence,
W ∈ U ∩ (AR ∪ A∞).

J

We do not know whether it is possible to prove the converse. However, we can prove
that under the extra condition of rootactiveness the conditions necessary for confluence are
also sufficient for confluence. The following lemma plays a crucial role in the proof of this
result. In a similar scenario for lambda calculus this role was played by Lemma 5.5 in [16].

I Lemma 7.5. Let U ⊆ CL∞ satisfy rootactiveness, closure under w-reduction, indiscernib-
ility and weak overlap. If M →→→⊥U N and N is a w⊥U -normal form, then nfR(M)→→→⊥U N .

Proof. We can suppose that U 6= CL∞ and M →→→out
⊥U

N . Then, M is obtained from N by
replacing some ⊥’s by terms in U⊥. We consider the set of terms

W = {W |W is a maximal subterm of M such that W ∈ U⊥}

Each subterm W ∈ W of M will be replaced by nfR(W ) in depth-first leftmost order. We
obtain a term M0 such that M →→→w⊥R M0. We have that W →→→w W0 →→→⊥R nfR(W ). By
closure under w-reduction, W0 ∈ U . By rootactiveness, nfR(W ) �U W0. By definition of
⊥, nfR(W ) →⊥U ⊥. Hence, M0 →→→⊥U N . Since N is a w⊥U -normal form, if an w-redex
occurs in M0 then it either occurs in some subterm W ∈ W or it overlaps some subterm
W ∈ W. By replacing W by nfR(W ), we remove all the possible w-redexes that are in W .
We may still have w-redexes that overlap a term in U . Suppose nfR(W ) overlaps a w-redex
of the form nfR(W )N1 . . . Nk in M0. Then WN1 . . . Nk is a w-redex in M . We have that
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14 Infinitary Combinatory Logic

nfR(W )N1 . . . Nk 6∈ U⊥ because otherwise by indiscernibilityWN1 . . . Nk ∈ U⊥ and N would
not be in w⊥U -normal form. By weak overlap, nfR(W ) cannot be K, S, KP or SP . By
weak overlap, the only possibility is that nfR(W ) = SPQ, k = 1 and SPQN1 →→→w W1N1
where W1 ∈ U ∩ (AR ∪A∞). In this case, to remove the w-redex, we replace the term W in
M by nfR(W1) instead of replacing it by nfR(W ). The fact that W is either a head active
term or an infinite left spine ensures that the normal form of WP can be calculated as the
application of the normal forms of W and P . In other words, we have that

nfR(WN1) = nfR(W1)nfR(N1)

Since nfR(W1) �R W1, we have that nfR(W1)→⊥U ⊥.
By replacing all terms in W in the fashion described above, we obtain a term M1 in

w⊥R-normal form such that M →→→w⊥R M0 →→→w⊥R M1 and M1 →→→⊥U N . By confluence of
w⊥R-reduction, we have that M1 = nfR(M). J

I Theorem 7.6 (Confluence). Let U ⊆ CL∞. If U is satisfies rootactiveness, closure under
w-reduction, indiscernibility and weak overlap then (CL∞⊥ ,→→→w⊥U ) is confluent.

Proof. The proof is described in the following diagram.

M

wzzzzuzzuuuuuuu
w $$ $$I$$IIIIIII

w⊥U

ttttittiiiiiiiiiiiiiiiii
w⊥U

** **U**UUUUUUUUUUUUUUUUU

M1

w⊥U

����
���

(1) L1

⊥U

�������������������
w⊥R $$ $$I$$IIIIII (2) L2

⊥U

�� ��
;��;;;;;;;;;;;;

w⊥Rzzzzuzz uuuuuu
M2

w⊥U

����
���

(1)

nfR(M)(3) (3)

⊥U
ttttittiiiiiiiiiiiiiii

⊥U
** **U**UUUUUUUUUUUUUUU

N1 (4)

⊥U UUUUUUUUUUUUUUU

UUUUUUUUUUUUUUU N2

⊥Uiiiiiiiiiiiiiii

iiiiiiiiiiiiiii

N1 = N2

Suppose we have a divergence M1 ←←←w⊥ M →→→w⊥ M2. By rootactiveness for U , we can re-
duceM1 andM2 further to their respective w⊥U -normal forms N1 and N2 by Theorem 3.15.
(1) By closure under substitution for U and Theorem 3.14 we find L1 and L2 such that
M →→→w L1 →→→⊥U N1 and M →→→w L2 →→→⊥U N2. (2) By Theorems 3.16 and 3.15, we
construct the reductions L1 →→→w⊥U nfR(M) and L2 →→→w⊥U nfR(M). (3) By Lemma 7.5
we then find the reductions nfR(L1) →→→⊥U N1 and nfR(L2) →→→⊥U N2. By normalisation
and confluence of (CL∞,→→→w⊥R), we have nfR(M) = nfR(L1) = nfR(L2). (4) Finally The-
orem 3.13 on confluence of ⊥U and the fact that N1 and N2 are by construction normal
forms for ⊥U -reduction implies that N1 and N2 are identical. J

I Example 7.7. Let U ⊆ CL∞. We construct the following sets:

U∗ = U ∪ {M ∈ CL∞ |M →→→w S(KW )I and W ∈ U}
U∗∗ = U ∪ {M ∈ CL∞ |M →→→w S(S(KK)W )N,W ∈ U and N ∈ CL∞}

If U is a set of meaningless terms that contains R and it is closed under w-expansion, then
U∗ and U∗∗ satisfy rootactiveness, indiscernibility, closure under w-reduction, w-expansion
and weak overlap. They do not satisfy overlap and hence, they are not meaningless. Yet the
corresponding infinitary combinatory logics are confluent and normalising by Theorems 7.6
and 3.15. There are uncountably many such sets.
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The constructions U∗ and U∗∗ are related to the set Uη of weakly meaningless terms defined
for infinitary lambda calculus in [16] where Uη = U ∪ {M ∈ Λ∞ | M →→→β λx.Wx and W ∈
U}. It is easy to see that (S(KW )I)λ and (S(S(KK)W )N)λ both β-reduce to λx.Wλx.

I Remark. Note that Theorem 7.6 could not be proved using the schema of the proof of
Theorem 3.18 since commutation of ⊥-reduction and w-reduction outside U may not hold.
To see this, take R∗∗ defined in Example 7.7 and M = (S(KK)W ). Then, the only way to
join ⊥P ←⊥U SMNP →w MP (NP ) is by w⊥-reducing MP (NP ) to ⊥P .

8 Related and Future Work

Sufficient and Necessary Condition for Confluence. In [16], we define a notion of
weak meaningless set for infinitary lambda calculus and prove that this is a sufficient and
necessary condition for confluence of β⊥-reduction . In the case of infinitary combinatory
logic, it remains open to give a sufficient and necessary condition for confluence of w⊥-
reduction. We think that hypercollapseness, closure under w-reduction, weak overlap and
indiscernibility should be sufficient condition for confluence besides of being necessary (The-
orem 7.4) but also sufficient. In other words, it remains open to prove Theorem 7.6 assuming
only hypercollapseness instead of rootactiveness.

Sufficient and Necessary Condition for Normalisation. In [16] we show that
normalisation implies rootactiveness for infinitary lambda calculus with β⊥-reduction. This
does not hold in the setting of combinatory logic with w⊥-reduction as witness by the follow-
ing example of normalising infinitary combinatory logic that does not satisfy rootactiveness.
Let D[ ] = S(K[ ])I. Note that DωP , the infinite nesting of such contexts applied to P is
rootactive and reduces to itself for all P . Define:

D = {M ∈ R | ∀P ∈ CL∞ ·M 6→→→w DωP} ∪ {M ∈ CL∞ |M →→→w Dω}.

To construct the normal form of a term M ∈ CL∞⊥ for w⊥D-reduction we first →w-reduce
M to its skeleton N . Next in the depth-first left-most order, we replace rootactive subterms
that can not reduce to a term of the form DωP by ⊥; and we replace rootactive subterms
that reduce to a term of the form DωP by ⊥P . Then we repeat the procedure ad infinitum
on these latter terms P that still may contain untreated rootactive terms. The resulting
reduction is strongly converging and its limit is a normal form in CL∞⊥U

.
It remains open to find a sufficient and necessary condition for having a normalising infin-

itary combinatory logic (CL∞⊥ ,→→→w⊥U ). This condition is necessarily weaker than rootact-
iveness.

Generalisation to Infinitary Term Rewriting and Combinatory Reduction
Systems. A further next step following the explorations in lambda calculus and combinat-
ory logic would be to investigate sufficient and necessary conditions for having confluence and
normalisation in the wider context of orthogonal term rewriting systems and combinatory
reduction systems.

Combinatory Algebras. Bethke, Klop and de Vrijer show that not every partial
combinatory algebra can be completed [2]. We could define a partial combinatory algebra
from the set of w-normal forms in CL∞. The interpretation of a term M is N if M →→→w N

and N in w-normal form. The fact that this is a partial combinatory algebra follows from
the normal form property [6]. This partial combinatory algebra is made complete by adding
⊥. Since there are many sets of meaningless terms, we have many ways of completing it.

Selinger shows that the standard term algebra as a combinatory algebra cannot be
ordered, i.e. every compatible partial order on it is trivial [13]. Lusin and Salibra show
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that there exists a wide class of combinatory algebras that admit extensions with a non-
trivial compatible partial order [10]. Salibra shows that there is a continuum of unorderable
lambda models [12]. In [14] we study orderability on the lambda models induced by the in-
finitary lambda calculus. It will also be interesting to study orderability on the combinatory
algebras induced by the infinitary combinatory logic. This may shed new light on Plotkin’s
conjecture saying that an absolutely unorderable combinatory algebra exists, i.e. it cannot
be embedded in any combinatory algebra admitting a non-trivial partial order [11].
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