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1. INTRODUCTORY REMARKS ON INFINITARY TERM REWRITING

There are at least two good reasons to study Infinitary Term Rewriting. First, we believe that
Infinitary Term Rewriting is of interest for its own sake, as natural extension of Finitary Term
Rewriting. Secondly, Infinitary Term Rewriting provides a sound and thorou gh basis for Graph
Rewriting, the theoretical modcl for implementations of functional programming languages.

Term Rewriting is a general model of computation. Computations ¢an be finite and infinite. 'The
usual focus is on successful finite computations: finite derivations endin g in finite normal form.
However, infinite computations computing a possible infinite answer are of interest as well:
recursive procedures enumerating some infinite set: e.g. the natural numbers or the Fibonacei
numbers. Until recently, infinite computations have hardly seriously been considered in the thcory
of Term Rewriting.

In functional programming languages likc Miranda™ or ML it is possible 1o manipulate with
lazy expressions representing infinite objects, like lists. Graph Rewriting has been introduced as a
theoretical framcwork to show the soundness of such computing. Infinitary Term Rewriting is a
foundation for Graph Rewriling: some instances of graph rewriting on shared graphs actually

represent infinite computations on infinite terms.
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At present the theory of infinitary rewriting for orthogonal term rewriting systems (OTRS) is
rapidly emerging in a scries of papers. Dershowitz, Kaplan and Plaisted have opened the series
with [Der89a,b, Ner90a] taking a rather topological approach. resulling in notions of (among
others) Cauchy convergence and m-normal form. Top-terminating O'TRSs play a central role in
their papers: for top-terminating OTRSs they prove properties implying an infinitary Church-
Rosscr property and they show transfinite long reductions are compressable in reductions of at
most length . Farmer and Watro [Far89] observed the necessity of strong convergence for some
instances of compressing and pointed out the link with Graph Rewriting.

In [Ken90a,b] the theory of infinite term rewriting has heen given a firm base concentrating on
strong convergence together with normal forms, but not ignoring Cauchy convergence and o-
normal forms. For the theory involving strong convergence the transfinite Parallel Moves Lemma,
the Compressing Lemma and the Unique Normal Form Property ar¢ provable, whereas
counterexamples for these results can be given in the case of Cauchy convergence and @-normal
forms. A general infinitary Church-Rosscr property can not hold for either theory as
counterexamples in [Ken90a,b] show. These counterexamples concern an OTRS with two
collapsing rules containing onec variable or an OI'RS with one collaps rule containing two
variables. However, also in in [Ken90a,b] for OTRSs that are non-unifiable an infinite Church-
Rosser property is proved for Cauchy converging reductions. See Section 2 for some details.

It is the purpose of the present paper to show that for strongly converging reductions the
unconditioned infinitary Church-Rosser property holds in non-collapsing OTRSs, improving the
results in [Der90a) and [Ken90b]. The proof method extends to orthogonal term rewrite systems
that contain non-collapsing rules togethier with only vue collaps 1ule of the form I(x) —» x.

Overview of this paper: In the next scction 2 we briefly introduce infinitary term rewriting. In
section 3 we define depth preserving left-lincar term rewrite systems and prove that the infinite
Church-Rosser property for strongly converging sequences holds for such term rewrite systems.
Using a variant of Park’s notion of hiaton we show in scction 4 that any OTRS can be
transformed into an depth-preserving OTRS, the so called e-completion. Exploiting the propertics
of the e-completions of non-collapsing O'1'RSs we finally prove the unconditioncd infinitary
Church-Rosser property for non-collapsing OTRSs in section 5.

2. INFINITARY ORTHOGONAL TERM REWRITING SYSTEMS

We briefly recall the definition of a finitary term rewriting system, before we define infinitary
orthogonal term rewriling systcms involving both finite and infinite terms. For more details the
reader is referred to [Der90b], [K1o90] and [Klo91].

2.1. Finitary term rewriting systems

A finitary lerm rewriting sysiem over a signature Z is a pair (Ter(Z),R) consisting of the set
Ter(Z) of finite terms over he signature Z and a sct of rewrite rules R € Ter(E)xTer().
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The signature T consists of a countably infinitc sct Vary of variables (x%,y,z,...) and a non-
empty set of function symbols (A,B,C,...,F,G,...) of various finite arities z 0. Constants are
function symbols with arity 0. The set Ter(Z) of finite terms (t,S,...) over Z can be defined as
usual: the smallest set containing the variables and closed under function application.

The set O(t) of occurrences (or positions) in t is defined by induction to the structure of t as
follows: O(t) = {< >} if tis a variable and O() = {< >} U {<i,u>| 1<i<n and <u>e O(t;)} if tis
of the form F(ty.....tn). If ue O(t) then the subterm t/u at occurrence u is defined as follows: t/< >
=t and F(t,....tn)/<i,u> = tj/u. The depth of a subterm of t at occurrence u is the length of u.

Contexts are terms in Ter(Zu{o}), in which the special constant O, denoting an empty place,
occurs exactly once. Contexts are denoted by C[ ] and the result of substituting a term t in place of
o is Cltle Ter(Z). A proper contextis a context not equal to O.

Substitutions are maps 6:Varg—Ter(2) satistying 6(E(ty.....tn)) = F(0(l1)....,0(tn)).

The set R of rewrite rules contains pairs (Lr) of terms in Ter(Z), written as 1 — r, such that the
left-hand side 1 is not a variable and the variables of the right-hand side r are contained in 1. The
result 19 of the application of the substitution of & to the term 1 is called an instance of 1. A redex
(reducible expression) is an instance of a left-hand sidc of a rewrite rule. A reduction stept > s1is
a pair of lerms of the form C[1°] — C[€], where 1 — 1 is a rewrite rule in R, Concatenating
reduction steps we gel a finite reduction sequence to — 11 — ... — In, which we also denote by g
—n I, OF an infinite reduction sequence to —> 41 — ... .

2.2. Infinitary orthogonal term rewriting systems

Au infinitary term rewriting system over a signature Z is a pair (Ter=(Z),R) consisting of the set
Ter=(Z) of finite and infinite terms over the signature £ and a set of rewrile rules R C
Ter(Z)xTer(X). It takes some claboration (0 deline the set Ter=(Z) of finite and infinite terms.
Finite terms may be represented as finite trees, well-labelled with variables and function symbols.
Well-labelled means that a node with n = 1 successors is labelled with a function symbaol of arity n
and that a node with no successors is labelled either with a constant or a variable. Now infinite
rerms are infinite well-labelled trees with nodes at finite distance to the root. Substitutions,
contexts and reduction steps gencralize trivially to the sct of infinitary terms Ter*?(Z).

To introduce the prefix ordering < on terms we extend the signature Z with a fresh symbol 2.
The prefix ordering < on Ter=(Zw{Q}) is defined inductively: x < x for any variable x, Q <t for
any term t and if ©1 < §1, ...,In < $pn then F(l,...,th) S F(S1,...,8n).

If all function symbols of X occur in R we will write just R for (Ter~(Z),R). The usual
properties for finitary TRSs extend verbalim to infinitary TRSs:

2.2.1. DEFINITION. LetR be an infinitary TRS.
(i) RS left-linear if no variable occurs more than once in a lefi-hand side of R's rewrite rules;
(ii) (informally) R is non-overlapping (or non-ambiguous) if non-variable parts of different
rewrite rules don't overlap and non-variable parts of the same rewrite rule overlap only entirely:
(ii") (formally) R is non-overlapping if for any two left hand sides s and t, any occurrence u inft,
and any substitutions ¢ and T:Varg —Ter(X) it holds that if (t/u)® = sT then either t/u is a variable
or t and s arc left hand sides of the same rewrite rule and u is the empty occurrence < >, the
position of the root.
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(iii) R is orthogonal if R is both lcft-lincar and non-overlapping.

It is well-known (cf. [Ros73], [Klo911) that finitary orthogonal TRSs satisfy the finitary
Church-Rosser property, ie., "¢ - =" C —* « "¢, where —" is the transitive, reflexive closure
of the relation —. It is obvious that infinitary orthogonal TRSs inherit this finitary property.

In the present infinitary context it is natural to define that a term is a normal form if it contains
no redexes, just like in the finitary context. A term t has a normal form s if there is a reduction t
— ¢ . Dershowilz, Kaplan and Plaisted [Der89a, Der89b and Der90b] consider a weaker, more
liberal notion of normal form: the w-normal forms. An w-nonnal form is a term such that if this
term can reduce, then it reduces in one step to itself. One sces easily that restricied o [inite terms
normal forms and @-normal forms are already diltcrent concepts: in the TRS with rule A — A the
term A is an @-normal form, but not a normal form.

2.3. Infinitary reductions and the infinitary Church-Rosser property

‘The set Ter(Z) of finite terms for a signature = can be provided with an ultra-metric d:
Ter(Z)xTer(Z) — [0,1] (cf. e.g. [AmA0]). The distance d(t.s) of two terms t and s is 0 if t and s
are equal, and otherwise 2-X. where ke N is the largest number such that the labels of all nodes of
s and t at depth less than or equal to k are equally labelled. The metric completion of Ter(Z) is
isomorphic to the set of infinitary terms Ter>(Z) (cf. [Am80])

In the complete metric space Ter*(Z) all Cauchy scquences of ordinal length ¢ have a limit. We
will now recall the transfinite converging reductions by Dershowitz, Kaplan and Plaisted
[DerS0b].

2.3.1. DEFINITION. A reduction of ordinal length o.is a set (1g)g<q Of terms indexed by the
ordinal o such that tg — tg41 for cach B+1<or.

2.3.2. DEFINITION. By induction to the ordinal o we define when a reduction (ig)p<o. iS
converging towards the limit ty (notauon: to ——); lee):
@ to—
() to—>g,, 1 ifto —>E 8;
(i) to—, hifto —>§ tg for all B<A and Ve>03B<A Vy (B<y<h — d(tyty) < €).
Byt —9;1 s we denote the existence of a converging reduction of Iength less than or equal to ©.

This definition of transfinite convergence is an instance of so-called Moore-Smith convergence
over nets (cf. for instance [Kel55]). If the topological space is a Hausdorff space like in the case
of Ter(Y) and Ter(Z) then each net in the space converges to atmost one point.

Converging reductions are not well behaved for even orthogonal TRSs, as shown in
[Ken90a,b]: transfinite converging reductions resist against compression into converging
reductions of length at most w+1; the generalisation of the finite Paralicl Moves Lemma fails (cf.
2.3.3); the infinite Church-Rosser property does not hold (cf. 2.3.8).

2.3.3. COUNTCEREXAMPLE [Ken90a,b]. Against an infinite Parallel Moves Lemma for Cauchy
convergence:

Rules: Axy) — Aly.x),C—D



Sequences: A(C,0) = AC,.O) = A(C,.O) = AC,O) = ... 2 A(C,O)
A(C,D) = A(D,C) = A(C,D) = A(D,C) — ...

Clearly A(C,C) —:-':!) A(C,C). The second infinite reduction obtained by standard projection over the

one step reduction C — D is not a converging reduction, and hence has no limit.

The stronger notion of a strongly converging reduction which generalizes Farmer and Watro
[Far89] has better properties: the full Compressing Lemma and infinite Parallel Moves Lemma
hold for orthogonal TRSs as shown in [Ken90a,b]. In a strongly convergent reduction it holds
that for cvery depth d, there is some point in the reduction after which all contractions are
performed at depth larger than d. We present the definition of strongly convergence for
transfinitely long reductions;

2.3.4. DEFINITION. By induction to the ordinal a2 1 we will define that a converging reduction
(1)B<e is a transfinite strongly converging reduction. Let dg denotes the depih of the contracted
redex Rgin tg — tpyq.
) (t0)o<1 = (IR)B<1 1s strongly converging;

(i) if (ty)y<p is strongly converging and Lg — 18+1, then (byy<p+1 1s strongly converging;

(iii) if A is a limit ordinal, (ty)y<p is strongly converging for all B<A and Vd>0 3p<A Vy
(B<y<h — dy>d), then (tpy<, is strongly converging.
If (tp)B<a+1 18 a transfinite strongly converging reduction, then we say that tg is the limit of
(tp)p<as notational short hand: 1p — ¢ le. By t —<¢ 8 We denote the existence of a strongly
converging reduction of length less than or equal to o.

The following lemma of Farmer and Watro will be useful. 1t provides a sufficient and necessary
condition when an infinite sequence of strongly converging reductions of length w+1 itselt 18
strongly converging.

2.3.5. LEMMA [Far89). Let tp,0 —<w tn.o = tnt1,0 e strongly converging for all ne N. Les dp x
denotes the depth of the contracted redex Rnx in tn x — Ink+1. If for all n there is a dn such thar
for all k it holds that dn x > dn, and im dy = oo, then there exists a term Lo o SUCh that o = eam

tew,w Via the strongly converging reduction 19,0 —<w 10,60 = [1.0=2<0 11,0 = 12,0 =<6 - oo lo,o

In order to state the infinite Parallel Moves Lemma for strongly convergent reductions as
proved in [Ken90a,b] we recall the notion of descendant.

2.3.6. DEFINITION, The set of occurrences YR that consists of the descendants of S after
contraction of R is defined relative to position v of S with respect to R.
(i) S and R are disjoint. Then V\R = {v};
(i) S and R are identcdl or 8 is above R. Then vIR = @;
(ili) R is above S, i.e. v = uwy' for some we O(R) and v'.
Then VAR = {uw'v'l variable in 1 al w and variable in r at w' are the same}.

2.3.7. INFINITE PARALLEL MOVES LEMMA for strongly convergent reductions [Ken90a,b].
Let (tne N be a stronglyy converging reduction of Ly with limit ty, and let tg — sg be a reduction of
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a redex R of \g. Then there is a sirongly converging reduction (Sp)ne o With limit 8, where for all
ne NU{®}, s, is obtained by contraction of all descendants of R in 1.

Strongly converging (and hence converging) reductions generally don't satisfy the infinite
Church-Rosser property for orthogonal TRSs, despite the infinite Parallel Moves Lemma for
strongly converging reductions. To be precisc a TRS has the infinite Church-Rosser property
W.LL strong convergence if g 0 —¢ € —<p 0 <pé—. The following counterexample 1s taken
from |Ken%0a,b]:

2.3.8. COUNTEREXAMPLE 1. Against the infinite Church-Rosser property for strong convergence:
Rules: AX) = x, Bx) = x, C—= ABK))
Sequences: C — A(B(O)) = A(C) = A(ABO)) = AA(C)) —p A®
C — A(B(C)) — B(C) — B(AB(O)) — B(B(O)) =, B®
Hence C —«,, A® as well as C —<,, B®, But there is no term t such that A® =<, 1 << B®be it
Cauchy or strongly converging.

2.3.9.COUNTEREXAMPLE II. Against the infinitc Church-Rosscr property for strong convergence:
Rules: D(x,y) — X, C— D(A,D(B,C))
Sequences: C = D(A.D(B,C)) = D(A,C) =* D(A,D(A,0)) =" D(A,D(A.D(A,C))) —...
C — D(A.D(B.C)) — D(B.C) —* D(B,D(B,C)) =" D(B,D(B,D(B,0))) —...
Clearly the limits of both reductions cannot be joint by either Cauchy converging or strong
converging reductions.

From the work of Dershowitz, Plaisted and Kaplan on convergent reductions it follows that any
left-linear, top-terminating and scmi-w-confluent TRS satisfies the infinite Church-Rosser
property:

c c c: ©
0T s B

(cf. [Der90al: combine Theorem 1, Proposition 2 with Theorem 9.). A TRS is top-terminating if
there are no top-terminating reductions of length @, that is reductions with infinitely many rewrites
at the root of the initial term of the reduction. Semi-w-confluency, that is

* C c c
CO074pC P20 %20

holds if the Transfinite Parallel Moves Lemma holds for converging reductions. On the
assumption that we are in a orthogonal 'TRS in which all convergent reductions are strong the
infinite Church-Rosser Property holds for this TRS. Top-termination implies this assumption.

Hence in top-terminating orthogonal TRSs the infinite Church-Rosser Property holds. In
[Ken%0a,b] this result has been a bit improved using the following syntactic equivalent of the
previous assumption. We recall without proof:
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2.3.10. DEFINITION [Ken90a.,b]. A TRS is called unifiable if it contains a unifiable rule, thatis a
rule 1 — r such that for some substitution ¢ with finite and infinite terms for variables 16 = 1.

Note that unifiability in the space of linite and inlinite terms means unitiability “without the
occurs check™: the terms I(X) and x are unifiable in this setting, and their most general unifier is the
infinite term I®. Collapsing rules, i.e. rules which right hand side is a variable are unifiable.

2.3.11. LEMMA [Ken90a,b]. The following are equivalent for an orthogonal TRS:
(i) the TRS is non-unifiable,
(1) all convergent reductions of the TRS are strong convergent,
(n) all convergent reductions are top-terminating.

2.3.12, THEOREM [Ken90a,b]. Any non-unifiable orthogonal TRS has the infinite Church-
Rosser Property for (strongly) converging reductions.

3. Depth preserving orthogonal term rewriting systems

In [Ken90a,b] it has been shown that for orthogonal TRSs the infinite Church-Rosser property
holds when restricted to terms that can be reduced to a normal form, i.e., in the infinitary seting
via a possibly infinite reduction to a possibly infinite term having no redexes. In the present
section and the next we consider two natural classes of orthogonal TRSs for which the infinite
Church-Rosser property hold without extra conditions for strongly convergent sequences.

3.1. DEFINITION. A depth preserving TRS is a left lincar TRS such that for all rules the depth of

any variable in a right-hand side is grcater than or cqual to the depth of the same variable in the
corresponding left-hand side.

3.2, I.EMMA. Depth preserving TRS are distance preserving in the following sense: Let1 — 1 be
a depth-preserving rule. Then for all contexts C[ ], all t1,...,t,, and 81,...,8, it holds that
d(C[I(t1,....tn)], C[I(s15...,50)]) = d(C[r(t1,....tn)], Clr(s1,...,8n)])- O

3.3. THEOREM. Any depth preserving orthogonal TRS has the infinite Church Rosser Property
Sfor strongly converging sequences.

PROOF. Letlgo—> 10,1 — ... 2<e W, and 10,0 = 11,0 = .- =< lw,0 be strongly convergent.

(i) Using the infinite Parallel Moves Lemma for strongly convergent reductions we construct
the horizontal strongly converging sequences tp,0 =" tn,1 2% ... 9<w .o 28 depicted in Figure
3.1. The vertical reductions are constructed similarly.
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(i) The construction of the infinite Parallel Moves Lemma also implies that the reduction
th, —<w tn+1.0 18 Strongly converging.

(iii) By the depth preserving property it holds for all m,ne Nu{®} the depth of the reduced
redexes in thm —™* th,m+1, which are all descendants of the redex Rom in tg m — t0,m+1, is at
least the depth of Ro m itself. Because tg g — 19,1 = -.- —<e [0,@ 1S strongly convergent we find
by Lemma 2.3.5 that ten 0 <o tw,1l <o o2 ... 1S strongly converging. Let us call its limit
Lo, o

(iv) Inthe same way the terms ty,,, are part of a strongly converging sequence. The limit of this
sequence is also equal 10 tg, ¢, as can be scen with the following argument.

Let e > 0. There is Ny such that for all m = Ny we have d(tem.to,o) < % £

Because of the strong convergence of tg g — 1] g = ... <@ te,0 there is an N such that for n
=N; we have that 2-9n < %a where dj is the depth of the redex Ry reduced at step 1.0 — tn+1.0-
Since the depth of the descendants of this redex Ry, occur at least at the same depth, and since the
TRS is the depth preserving we get d(fe.m.th m) <%£ for all me NU{®m} and all n > N».

For similar reasons there is N3 such that for all ne NuU{®} and all m > N3 we have that
Attt < %s

Let N be the maximum of Ny, N3 and N3. Then forn =N we find

d(tn,w-tw,w) = d(tn,estn,N)+d(th,Notw,e) for any m 2N
= ?(tn.f}’tn,iN)"'d(tn,Nstm,N)"*'d(lm,Nalm,m)

= —E,+§t':+§t‘,

3
€. 0

1A

3.4. REMARK. Observe that in this proof therc are two places where it is cssential that the
reduction are strong convergent. The first is the appeal to the infinite Parallel Moves Lemma. The
sccond is in the argument that the sequences (L ) and (I ) have (he same limi.



4. Non-collapsing orthogonal term rewriting systems

4.1. DEFINITION. A TRS R is non-collapsing if there is no rewrite rule in R whose right-hand
side is a single variable.

We will show that any non-collapsing orthogonal TRS satifies the infinitary Church-Rosser
property with respect strong convergence. The proofs will use a variant of Park’s notion of
hiaton. The idea is to replace a depth losing rule like A(x,B(y)) — B(x) by a depth-preserving
variant A(x,B(y)) — B(e(x)). In order to keep the rewrite rules applicable to terms involving
hiatons, we also have to add many more variants: A(x,eM(B(y))) —¢ B(em+l(y)) for all m > 0.
We will call the new TRS the -complction of the old one.

4.2. CONSTRUCTION. Let R be a lefi-linear TRS. The e-completion Re is defined as the TRS
(Zu{e}.Re), where € is a fresh unary symbol with respect to R, and Re consists of all rewrite
rules 1g — 1, where lg is obtained from a left-hand side of a rewrite rule 1 — rin R by substituting
any proper subterm t (that is not a variable, or 1 itself) in 1 by €™(t) for some ne N, and rg 1s
obtained from the corresponding right-hand side r by replacing cach occurrence of a variable, say
X, by &(x), where m is the minimum of 0 and the depth of X in 1g minus the depth of this
particular variable x inr.

The proof of the following proposition is straightforward and omitted.

4.3. PROPOSITION. The e-completion of an orthogonal TRS is depth preserving and orthogonal.
|

4.4, LEMMA. Let R be a non-coliapsing TRS. If t —-)Z S is an infinite, Cauchy converging —g-
reduction of length ©, where t is an e-free term. Then

(i) there are no branches ending in an infinite string of € in the tree representation of s,

(il) the term s/e obtained by erasing all € in s is well formed term of the original TRS R,
Let t ¢, s/e be the reduction obtained from t —_ s by erasing all €'s,

(iil) ift -, 8 Cauchy converging, then so is T —q S/E;

. s g : :
Gv) ift =, Sis strongly converging, then 50 is t — ¢ S/€E.
V) ift =@ s is strongly converging in R, then there exists a strongly converging reduction t
£ S E e
—,rin Rg such that erasure of all c'sint > T results again in the sequence t —g 8.

PROOQF. (i) In the limit term of a Cauchy converging reduction starting with an g-free term one
easily sees that an infinite string of £'s can only be produced by inlimte applications of rules
containing no function symbols in the right-hand side. However, by assumption we have
excluded such collapsing rules.

(i) Clearly the root itsclf is not cqual to €, and it is harmless to delete any finite string of unary
g's in a branch. (i) excludes the harm(ul situation of an infinite string of €'s on a branch, dclction
of which would leave the last function symbol on the branch wilh a missing argument.

(iv) Supposet —¢ S. represents a strongly convergent sequencet=19 =21 = ... D lp=81n



10

R¢. Let pe N. Let g be the minimal natural number below which depth at any branch a functicn
symbol F can be found for which there are p function symbols not cqual to € on the branch in
between F and the root. Such a number q has to exist, since by (i) all infinite branches contain
infinitely many function symbols unequal to €. (The construction actually invelves Konig’s
Lemma. If we cut all infinite branches at the point where we count the p™ function symbol from
the root, we end up with a timitely branching tree with finite branches. Then by the contraposiion
of Konig’s Lemma there is an upperbound on the length of the branches in the truncated tree. Let
q be this upperbound.)
Because t —>E s is strongly converging we can find an Ne N such that d,, > q for a]l n = N,
Clearly, after deleting all e in ty and s we get as remaining depth dpje < 2°P, Hence t —> , /e is
strongly convergent.

(iii) A similar argument can be given as for (iv).

(v) Lett—g s be strongly converging in R. Clearly, by imitating the steps we can construct a
strongly converging reduction t —>Z rin Rg, such that erasing of all g'sint —)i} r results again in
the sequence t —; s. o

5. Main Theorem

The main Theorem 5.1 and and its corollary 5.2 in this section are improvements of respectively
[Der90a] and [Ken®0a].

The results in [Der90a] imply that top-terminating OTRS, that is OTRS such that there are no
derivations of length ® with infinitely many rewrites at topmost position, satisfy the infinite
Church-Rosscr property for Cauchy converging reductions: combine Theorem 1, Proposition 2,
Theorem 10 (which is true under the condition of top-termination) with Theorem 9 in [Der90a].

We will strengthen this in 5.1 to: non-collapsing OTRSs satisfy the infinite Church-Rosser
property for strongly converging reductions, This is a stronger result becausc (i) under the
assumption of top-termination every Cauchy converging reduction is strongly converging and (ii)
any top-terminating infinitary TRS is non-collapsing, as one easily sces. Actually it will follow
from our construction that the Church-Rosser property holds also for OTRSs all which rules are
non-collapsing but one, the exception being a collaps rule of the form I(x) — X, i.e., a rule that
containg only one variable in its left hand side (cf. 5.2).

5.1. THEOREM. Any non-collapsing orthogonal TRS satisfies the infinite Church-Rosser Property
for strongly converging vedictions

PROOF. Let R be an OTRS. Constructs its e-complction Re. By Theorem 3.3 the depth-preserving
OTRS Rg satisfies the infinitc Church-Rosscr property. So if we start with two strongly
convergent reductions { = <p $1 and t =<, $2. thcn by Lemmd 4.4 (v) we can lift these to
strongly converging reductions in Rg, let us say t —) o ryandt —-> 2 By Theorem 3.3 we find
a join u for the two lifted reductions such that r; _)gm u as well as rz —) o Erasing all g's we
see that in R the term v/e is the join of t —< 51 and { —<,; s2 because by Lemma 4.4 (v) and (v)
the reductions s1 = ri/e  »< U/c and s3 = ra/e >« u/e are both strongly convergent in R.
O
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5.2. COROQIILARY. Any OTRS defined hy non-collapsing rules and possibly one collapsing rule
involving only one variable satisfies the infinite Church Rosser Property for strongly converging
reductions.

PROOF. In an OTRS defined by non-collapsing rules and possibly one collapsing rule involving
only one variable we can follow the same proof strategy as belore. Suppose the UI'RS has one
collapsing rule I(x) — x. As hiaton we take the symbol T instead of £. Clearly 4.4(i) does no
longer hold. However, if in the erasing proces s/e we erase only finite string of of €’s and no
infinite strings, then we can prove and apply Lemma 4.4(iv) and (v) again. O

(QUESTION. Do non-collapsing O'I'RSs satisly the infinite Church-Rosser property for Cauchy
converging reductions?

We feel the answer to this question is positive. We see two proof strategies: one could try to
show that depth preserving OTRSs satisfy the infinite Church-Rosser property for Cauchy
converging reductions. Although the proot of Theorem 3.3 seems to depend rather essentially on
strong convergence, cf. the Remark 3.4, we didn't exploited T.emma 3.2. Observe that the
Counterexample 2.3.3 against an infinitary parallel moves lemma for Cauchy converging
sequences involves a depth preserving OTRS.

An different technique could be via an application of the gencralized notion of B6hm normal
form, that we will introduce in the extended version [Ken90b] of [Ken90a].

Acknowledgments. We thank Jeroen Warmerdam for some comments regarding terminology.

6. REFERENCES

[Am&0]  A. ARNOID and M. NIVAT, The metric space of infinite trees. Alpebraic and topological properiies,
Fundamenta Informatica, 4 (1980), 445-76.

[Bar84] H.P. BARENDREGT, The Lambda Calculus, its Syntax and Semantics, 2nd ed., (North-Holland, 1984).

[Bar87] H.P. BARENDREGT, M.C.J.D. VAN EEKELEN, J.R'W. GLAUERT, IL.R. KENNAWAY, M.J,
PLASMENER, AND M.R. SLEEP, Term graph rewriting, Proc. PARLE Conference vol II, LNCS vol.
239, 141-158 (Springer-Verlag, 1987).

[Der] N. DERSHOWITZ and J.-P. JOUANNAUD, Rewrite systems, to appear as Chapter 15 of Vol. B of
Handbook of Theoretical Computer Science, North-Holland, 1989,

[Der89a] N. DERSHOWITZ and S. KAPLAN, Rewrite, rewrite, rewrite. rewrite. rewrite, Principles of
programming languages, Austin, Texas, 1980, pp. 250-259.

[Der80b] N. DERSHOWITZ, §. KAPLAN and D.A. PLAISTED, Infinite Normal Forms (plus corrigendum), ICALP
1989, pp. 249-262.

[Der90a] N. DERSHOWITZ, S. KAPLAN and D.A. PLAISTED, Rewrite, rewrite, rewrite, rewrite, rewrite,
Principles of programming languages, extended version of [Der89b], 1o appear in ?77.

[Der90b] N. DERSHOWITZ and J.P. JOUANNAUD, Kewrite Sysiems, 1o appedr in Handbook of Theoretical
Computer Science (ed. ]. van Lecuwen) vol.B, chapter 15. North-Holland.

[FarG] W M. FARMER and R.J WATROQ, Redex capturing in term graph rewriting, in Computing with the



12

[Hue79]

[KenS0al

[Ken00b]

[K1080]

[Klo90]

[K1001]

[ParB3]

Curry Chip, 1989.

G.HUEL and J.-J. LEVY, Call-by-need compulations in non-ambiguous linear term rewriting systems,
Rapport INRIA nr. 359,

JR.KENNAWAY, J.W. KLOP, M.R. SLEEP and F.J. DE VRIES. Transfinite reductions in orthogonal
term rewriting systems (full paper), to appear as Report CS-R0041, CWI, Amsterdam, 1990.
JR.KENNAWAY, J.W, KLOP, M.R. SLEEP and F.J. DE VRIES, Transfinite reductions in orthogonal
term rewriting systents (extended abstract), Report CS5-R9042, CWI, Amsterdam, 1990,

I.W. KLOP, Combinarory reduction systems, Mathematical Centre Tracts no. 127, CWI, Amsterdam
1980.

J.W. KLOP, Term rewriting systems from Church-Rosser to Knuth-Bendix and beyond, CWI1 Report C5-
R9013, Amsterdam 1980, To appear in Proceedings ICALP'90.

IW. K1LOP, Term rewriting systems, to appear in Handbook of Logic in Computer Science, Vol T (eds.
8. Abramsky, D. Gabbay and T. Maibaum), Oxford University Press, 1991.

D. PARK, The “fairness problem” and nondeterministic computing nefworks, in Foundations of
Computer Science IV, Part 2 (eds. J.W, de Bakker and J. van Leeuwen), Mathematical Centre Tracts 159,
CWI, Amsterdam, 1983, p. 133-161.






